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Preferential urn model and nongrowing complex networks
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A preferential urn model, which is based on the concept “the rich get richer,” is proposed. From a relation-
ship between a nongrowing model for complex networks and the preferential urn model in regard to degree
distributions, it is revealed that a fitness parameter in the nongrowing model is interpreted as an inverse local
temperature in the preferential urn model. Furthermore, it is clarified that the preferential urn model with
randomness generates a fat-tailed occupation distribution; the concept of the local temperature enables us to

understand the fat-tailed occupation distribution intuitively. Since the preferential urn model is a simple sto-
chastic model, it can be applied to research on not only the nongrowing complex networks, but also many other

fields such as econophysics and social sciences.
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Recently, complex networks have attracted a lot of inter-
est in research fields of statistical physics [1]. In the research
fields, many scientists have mainly focused their attention on
growing networks in which a new node is added to networks
with time. Barabdsi and Albert [2] have proposed an impor-
tant growing model, so-called the Barabdsi and Albert (BA)
model, and it has been revealed that scale-free networks with
the degree distribution P(k) ~ k=3 are generated by using the
concepts of growth and preferential attachment. The concept
of “preference” seems reasonable for explaining various phe-
nomena in social science literature; the concept indicates the
fact “the rich get richer.”

While it has been revealed that the concept of preference
could be sufficient to generate a fat-tailed degree distribution
in the growing case, it is an open question whether the con-
cept of preference is sufficient in the case of nongrowing
networks. It has been shown that the concept of preference
alone does not give networks with the fat-tailed degree dis-
tribution in the nongrowing case [1,3,4]. Though fat-tailed
degree distributions are obtained for a wide range of param-
eters in the growing case, Dorogovtsev et al. [3] have shown
that such fat-tailed degree distributions may exist only at a
certain critical point in the nongrowing case. As for non-
growing networks, threshold models have succeeded in gen-
erating scale-free networks [5-7]. In the threshold models,
intrinsic weights are different from each other, and the ran-
domness is essential. Hence, it is expected that randomness
plays an important role in generating the fat-tailed degree
distribution in nongrowing cases.

While the threshold models make networks without dy-
namical processes, networks in the real world could have
some dynamics, so that it is reasonable to consider dynami-
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cal models for nongrowing networks. One of the examples of
dynamical processes is a rewiring process proposed by Al-
bert and Barabdsi [8], though the rewiring process has been
introduced to a growing model. For the case of nongrowing
models, simple dynamics with the preferential concept do
not generate a network with the fat-tailed degree distribution,
as described above. However, a dynamical model with pref-
erential rewiring processes and randomness has recently
been proposed [4], and it has been revealed that the random-
ness in regard to fitness parameters could generate networks
with a fat-tailed degree distribution.

In the present paper, we propose a new stochastic model
in order to discuss and interpret nongrowing complex net-
works. The proposed stochastic model is based on urn mod-
els, which is widely used in physics, mathematics, econom-
ics, and so on. Several urn models have been studied in
recent years [9-15]. The urn model proposed in the present
paper is based on the preferential concepts, so that we refer
to the new urn model as the preferential urn model. We show
how the nongrowing model for complex networks relates to
the preferential urn model, and the fitness parameters of the
nongrowing model directly correspond to inverse local tem-
peratures of urns. These interpretations and discussions allow
us to understand the nongrowing networks more intuitively:
nodes with high temperature tend to release edges attached to
them, and those with low temperature do not. Furthermore, it
is clarified that the preferential urn model with randomness
generates a fat-tailed occupation distribution.

At first, we introduce a nongrowing model with the pref-
erential concepts. We here consider an undirected network
without growth. Starting a random network with N nodes and
M edges, we repeat the following rewiring procedures.

(i) Select an edge /;; at random.

(ii) Replace the edge /;; by an edge /;,,, where node m is
chosen randomly with a probability
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FIG. 1. Process of the rewiring. An edge is chosen at random
and reconnected to a node selected preferentially.
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where k,, is the degree of node m, and f3,, a fitness parameter
of node m. The fitness parameters {3;} represent that each
node has a different ability to compete for edges. A value of
the fitness parameter B; is chosen from a fitness distribution
¢(B), and the fitness parameters are time independent.

The procedure is illustrated in Fig. 1.

We denote the occupation probability of nodes with de-
gree k and fitness parameter 8 in [ B3, 8+dpB] as fi(B,t). Us-
ing a rate equation approach, a time evolution of f3(8,1) is
described as follows:

Ifi(B.1) : (k+1)P(B.1) + Kofic1(Bo1) 3 kfi(B.1)
a Z(1) Z(1) M

N (k+1)fr1(B,1)
—

2)

where Z(r) is the normalization constant defined by Z(z)
=[dB=,(k+1)Pf(B,1), and M is the number of edges in the
whole network. The similar approach to nongrowing models
with fitness parameters is described in Ref. [4]. However, the
analytical treatments using the rate equation have not suc-
ceeded in calculating the degree distribution in the case of
the models with randomness because of their complexity.

Next, we introduce the preferential urn model (Fig. 2).
Details of the analysis of general urn models are briefly re-
viewed in Ref. [12]. While the definition of energy in the
preferential urn model is different from previous urn models,
general formalisms for analysis are similar. We here consider
the system in which there are N urns and M balls. The num-
ber of balls in urn i is denoted as n;, and then M =Eﬁlni. An
energy of each urn is defined by

E(n;) =—In(n;!), (3)

and hence the Hamiltonian of the whole system is
H=3N E(n;). Using the energy, we calculate the unnormal-
ized Boltzmann weight attached to urn i as follows:

Dn,= exp[— BiE(n)]= (n;))Pi. (4)

For general use, we assume that each inverse temperature (;
could have a different value. In physics, it might seem

PHYSICAL REVIEW E 72, 065104(R) (2005)
Randomly Preferentailly
chosen ball chosen urn

a0

%
J1|-1

FIG. 2. Preferential urn model. A ball is chosen at random, and
the ball is moved to an urn selected preferentially.

strange that components of the system have different tem-
peratures, but in information physics or social sciences, there
should be no restriction for the inverse temperatures (or one
may say that the system is nonequilibrium). We denote the
inverse temperature as the inverse local temperature because
of its locality. The unnormalized Boltzmann weight allows
us to determine dynamics of the urn model. Using the heat-
bath rule, we calculate the transition rate W, ., from the
state n; to n;+1 as follows [16]:

Prt {(n;+ 1)1}
p"i - {(nl)'}ﬁl

Therefore, the dynamics of the preferential urn model is
summarized as follows:

(1) Choose a ball randomly.

(2) Move the drawn ball to an urn selected by the transi-
tion rate W",-—*"#l'

It should be noted that the dynamics with the above tran-
sition rate, W,li_,nl_ﬂ, lead to the same rate equation of Eq.
(2). Therefore, we consider the preferential urn model in-
stead of the nongrowing model in regard to the degree dis-
tribution; we regard the number of balls in each urn as that of
edges attached to each node.

Interpreting the nongrowing complex networks as the
preferential urn model, we can understand the nongrowing
complex networks more intuitively. First, each node tends to
get edges more and more because the energy of Eq. (3)
shows each node is stable when the node obtains a lot of
edges. Additionally, each node competes for edges because
of the restriction that the total number of edges is fixed.
Second, the fitness parameter [3; directly corresponds to the
inverse local temperature. Considering the fitness parameter

74

n;—ng+l

=(n;+ 1P, (5)
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as the local temperature, we easily lead to the following in-
terpretation: nodes with higher temperature are likely to kick
out edges, and those with lower temperature tend to store
edges.

Next, we analytically calculate the occupation probability
of the preferential urn model. To calculate the occupation
probability, the partition function of the preferential urn
model is considered. We denote the average density (average
degree) as p, and then M=pN. The partition function is cal-
culated as follows [12]:

N
pl‘l pil
Z(N.M) = E E Nﬁ(EwM)
m=0  ny=0 m!t oyt \ig
pnl prw% dZ S n—M—1
_Eo 2o ! ony! 27'”Z
dz 1
= % o M+l[ (Z)]N
dz 1
=0 —exp)-Inz+M|Inz+— lnG(z)
27
(6)
where
G)=3 2, (7

kk'

We calculate the partition function using the saddle-point
method, and the occupation probability of urn 1 is obtained

by
fk,eq E 2 5(”1’ _1pnN (2”1»M)
Z(N M)nl—O nn=0 l! nN'
k
Pr_Zs
=k s 8
k! G(z) ®)
where z is the saddle-point value
2:G'(z5)
== )
G(zy)

In what follows, we explain three examples of the prefer-
ential urn models; two of them are homogeneous models in
which all the inverse local temperatures have the same val-
ues; the other one has randomness in the inverse local tem-
peratures.

(1) High-temperature limit. We consider the case 3;,—0
for all i. Therefore, the distribution of the inverse tempera-
ture is @(B)=45(B). In this case, it is easy to calculate the
degree distribution from Egs. (4), (8), and (9), and then the
occupation probability follows a Poisson distribution

o
P(k) =fk,eq - e_PE (10)
The occupation probability corresponds to that of ordinary
random networks [1].
(2) The case without randomness. When all urns have the
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FIG. 3. Examples of the occupation distributions of the prefer-
ential urn model. (a) The case of high-temperature limit
[¢(B)=38(B)]. The density is p=4.0. (b) The case with nonrandom-
ness [d(B)=8(B—1)]. (¢) The case with uniform randomness
(H(B)=1,(Be[0,1])). The density is p=4.0. In all the cases of (a),
(b), and (c), the number of urns is N=1000 and 2000N ball-
exchange processes have been performed. The data are averaged
over 20 samplings.

same inverse temperature, i.e., B;=1 for all i, we obtain the
following occupation probability from Egs. (4), (8), and (9):

Lexp{—kln<1+l>}. (11)
+p p

The occupation probability of Eq. (11) is the same one in
Ref. [4].

(3) The case with randomness. When there is randomness
in the inverse local temperatures, we can also perform the
similar analytical treatments. Generally speaking, it is diffi-
cult to analyze the model with randomness, and the analyti-
cal treatments become very complicated. In the analysis of
the preferential urn model with randomness, we use the rep-
lica analysis [17]. In the analysis, we assume the self-
averaging property of the equilibrium occupation probability

P(k) =fk,eq =
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and replica symmetry. The analytical treatment [ 18] leads to
the following occupation probability in the case of the uni-
form distribution of the inverse local temperatures, ¢(8)=1,

Bel0,1]:

1 B-1_k
m(k!)—zsdﬂ. (12)

B
n=0

P(k) =

When the density is sufficiently large, i.e., p> 1, we obtain
the approximate form of the occupation probability as
P(k)~k™*(In k)2 [18]; the occupation distribution follows a
generalized power law with a squared inverse logarithmic
correction.

These analytical treatments make clear that the concept of
local temperatures is useful to understand the fat-tailed oc-
cupation probability in the case with randomness. When
there is no randomness, all urns compete for balls, and hence
a fat-tailed behavior does not occur; in the case with random-
ness, several urns with low temperature tend to store more
balls than those with high temperature, and hence urns with
many balls could emerge. Therefore, using the concept of the
local temperatures, we can intuitively understand the fat-
tailed occupation probability.

Finally, we give comparisons between the results of the
analytical treatments and numerical experiments. Figure 3
shows the comparisons. In the numerical experiments, we
use the preferential urn model with the number of urns
N=1000. Initially, each inverse local temperature is deter-
mined by using a distribution ¢(), and balls are distributed
randomly. Next, we repeat the ball-exchange procedures; se-
lect a ball randomly, and move the drawn ball to an urn
selected by using W, ., of Eq. (5). The number of the
ball-exchange procedures are 2000N, and we checked that
this number of exchange procedures is enough to give
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equilibrium states. In Fig. 3(a), we set the density as p=4.0,
and the distribution of the inverse local temperatures as
¢(B)=8(B). The solid line in Fig. 3(a) corresponds to
Eq. (10). Figure 3(b) shows the results of the case
@(B)=38(B—1). We have calculated two cases with the den-
sity p=2.0 and p=5.0, and the solid lines in Fig. 3(b) corre-
spond to Eq. (11) with the density p=2.0 and p=5.0, respec-
tively. In Fig. 3(c), we show the result of the case ¢(B)=1,
Be[0,1]. We set the density as p=4.0, and the solid line in
Fig. 3(c) corresponds to Eq. (12) with z,=0.97. Those results
are in good agreement with corresponding analytical results.

In summary, we propose a different urn model. From
analysis of the preferential urn model, it has been revealed
that there is a direct relationship between the nongrowing
model with preferential rewiring processes and the preferen-
tial urn model in regard to the degree distribution. The rela-
tionship allows us to introduce the concepts of energy and
the inverse local temperature to the nongrowing complex
networks, and it has been shown that each fitness parameter
is directly interpreted as each inverse local temperature.
These concepts let us understand the nongrowing complex
networks intuitively. We note that the preferential urn model
would be widely applicable. The concept “the rich get
richer” would be important for various systems such as
econophysics and social sciences. Without the growing prop-
erty, fat-tailed distributions are obtained by the concept of
randomness; it is likely that each agent (or component) of a
system has different ability and this corresponds to the ran-
domness of the inverse local temperatures.
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